
Optimization of uniform interpolant formulas

Yago Iglesias Vázquez

June-July 2024

1 Objective

H. Férée and S. van Gool carried out a verified implementation of Pitts’ [Pitts,
1992] construction of propositional quantifiers in intuitionistic propositional
logic (IPC) [Férée and van Gool, 2023] and extended to iSL, K and GL [Férée
et al., 2024]. This work led to the release of a Uniform Interpolation Calculator
[git, 2024]. The objective of my internship was to simplify the formulas com-
puted by the calculator using Coq, ensuring that the simplification is equivalent
to the original formula, and thus remains a uniform interpolant.

2 Introduction

Pitts’ theorem states that for every propositional formula ϕ(q̄, p), we can com-
pute p-free formulas

Ep(ϕ) and Ap(ϕ)

such that for every p-free formula ψ,

if ϕ ≼ ψ then ϕ ≼ Ep(ϕ) ≼ ψ

and
if ψ ≼ ϕ then ψ ≼ Ap(ϕ) ≼ ϕ

where ≼ is the Lindenbaum-Tarski preorder, defined as follows:

ϕ ≼ ψ ⇐⇒ ϕ ⊢ ψ

⊢ being logical entailment.
While for this internship we only work with IPC logic this theorem remains

valid pour other logics such us iSL, K and GL.
The main objective of this internship is to optimize the formulas yielded by

Ep and Ap while preserving their properties.

1

3 Methodology

To ensure that the simplifications preserve the properties of the formulas, the
process will be conducted in three steps:

1. Define the notion of equivalence between formulas and prove that the
simplifications preserve this equivalence.

2. Prove that the simplifications do not introduce new variables.

3. Verify that the simplifications of the uniform interpolants remain uniform
interpolants.

4 Equivalence

The primary task of the project involved defining the notion of equivalence
between formulas and proving that the simplifications preserve this equivalence.

We say that two formulas ϕ and ψ are equivalent if and only if ϕ ≼ ψ and
ψ ≼ ϕ.

The main theorem of this section is as follows:

Theorem 4.1 (Simplification Equivalence)

∀ϕ, simp(ϕ) ≼ ϕ and ϕ ≼ simp(ϕ)

where simp(ϕ) is the simplified version of ϕ.
This theorem is proven by induction on the weight of the formula. The proof

is also divided into lemmas that establish the equivalence of the simplifications
of the different connectives.

5 Simplifications

5.1 Obviously Smaller

The Lindenbaum-Tarski preorder, ≼, is deterministic and can be computed for
any two formulas, but this computation is expensive. We propose an approxi-
mation based on obvious entailments:

Fixpoint obviously_smaller (f1 : form) (f2 : form) :=
match (f1, f2) with
| (Bot, _) ⇒ Lt
| (_, Bot) ⇒ Gt
| (Implies Bot _, _) ⇒ Gt
| (_, Implies Bot _) ⇒ Lt
| (And f1 f2, f3) ⇒

match (obviously_smaller f1 f3, obviously_smaller f2 f3) with
| (Lt, _) | (_, Lt) ⇒ Lt
| (Gt, Gt) ⇒ Gt

2

| _ ⇒ Eq
end

| (Or f1 f2, f3) ⇒
match (obviously_smaller f1 f3, obviously_smaller f2 f3) with
|(Gt, _) | (_, Gt) ⇒ Gt
|(Lt, Lt) ⇒ Lt
| _ ⇒ Eq
end

| (f1, f2) ⇒ if decide (f1 = f2) then Lt else Eq
end.

In summary, ⊤ is greater than any other formula because everything entails
it. Conversely, ⊥ is smaller than any other formula since it entails everything.
We evaluate recursively under conjunction and disjunction using an abortive
rule: if a subformula of a disjunction is greater than another formula, then the
entire disjunction is greater than that formula, and a similar rule applies to con-
junctions. The final case states that every formula entails itself, corresponding
to the generalised axiom.

5.2 Disjunctions and conjunctions

5.2.1 Disjunctions

Disjunctions are simplified in two steps. The first step involves simplifying
formulas in pairs. Given two formulas ϕ and ψ, we aim to find a simpler formula
that is equivalent to ϕ ∨ ψ. This task is performed by the function simp or:

Definition choose_or f1 f2 :=
match obviously_smaller f1 f2 with
| Lt ⇒ f2
| Gt ⇒ f1
| Eq ⇒ Or f1 f2
end.

Definition simp_or f1 f2 :=
match (f1, f2) with
| (f1, Or f2 f3) ⇒

match obviously_smaller f1 f2 with
| Lt ⇒ Or f2 f3
| Gt ⇒ Or f1 f3
| Eq ⇒ Or f1 (Or f2 f3)
end

| (f1, And f2 f3) ⇒
if decide (obviously_smaller f1 f2 = Gt)
then f1
else Or f1 (And f2 f3)

|(f1,f2) ⇒ choose_or f1 f2
end.

The simplifications are summarized in Figure 1.

3

ϕ ≼ ψ ϕ ∨ ψ ≡ ψ
ψ ≼ ϕ ϕ ∨ ψ ≡ ϕ
ϕ ≼ ψ ϕ ∨ (ψ ∨ ω) ≡ ψ ∨ ω
ψ ≼ ϕ ϕ ∨ (ψ ∨ ω) ≡ ϕ ∨ ω
ψ ≼ ϕ ϕ ∨ (ψ ∧ ω) ≡ ϕ

Figure 1: Simplification of disjunctions

The second step involves normalizing large disjunctions. This is achieved by
applying the commutativity and associativity of disjunctions, flattening them
to the left, and then applying the simp or function to the subformulas. For
example, (ϕ ∨ (ψ ∨ ω)) ∨ η is flattened to simp or η (simp or ω (simp or ψ ϕ)).
The function that deals with this is simp ors:

Fixpoint simp_ors f1 f2 :=
match (f1,f2) with
|(Or f1 f2, Or f3 f4) ⇒ simp_or f1 (simp_or f3 (simp_or f2 f4))
|(Or f1 f2, f3) ⇒ simp_or f3 (Or f1 f2)
|(f1, Or f2 f3) ⇒ simp_or f1 (Or f2 f3)
|(f1, f2) ⇒ simp_or f1 f2

end.

5.2.2 Conjunctions

The same process is applied to conjunctions. The simplifications are summarized
in Figure 2.

ϕ ≼ ψ ϕ ∧ ψ ≡ ϕ
ψ ≼ ϕ ϕ ∧ ψ ≡ ψ
ϕ ≼ ψ ϕ ∧ (ψ ∧ ω) ≡ ϕ ∧ ω
ψ ≼ ϕ ϕ ∧ (ψ ∧ ω) ≡ ψ ∧ ω
ϕ ≼ ψ ϕ ∧ (ψ ∨ ω) ≡ ϕ

Figure 2: Simplification of conjunctions

5.3 Implications

Unlike conjunctions and disjunctions, large implications are not flattened. In-
stead, we have an analogous function to simp or called simp imp.

Definition simp_imp f1 f2 :=
if decide (obviously_smaller f1 f2 = Lt) then Implies Bot Bot
else if decide (obviously_smaller f1 Bot = Lt) then Implies Bot Bot
else if decide (obviously_smaller f2 (Implies Bot Bot) = Gt) then Implies Bot Bot
else if decide (obviously_smaller f1 (Implies Bot Bot) = Gt) then f2
else if decide (obviously_smaller f2 Bot = Lt) then Implies f1 Bot
else Implies f1 f2.

4

Which can be summarized in Figure 3.

ϕ ≼ ψ ϕ→ ψ ≡ ⊤
ϕ ≼ ⊥ ϕ→ ψ ≡ ⊤
ψ ≼ ⊤ ϕ→ ψ ≡ ⊤
ϕ ≼ ⊤ ϕ→ ψ ≡ ψ
ψ ≼ ⊥ ϕ→ ψ ≡ ¬ϕ

Figure 3: Simplification of implications

5.4 Boxes

The simplifications involving the box operator (□) are more complex. Therefore,
we only simplify the formula within the box operator and do not simplify the
box operator itself. This corresponds to the following theorem:

Theorem 5.1 (Box Congruence)

∀ϕ, ψ, ϕ ≼ ψ =⇒ □ϕ ≼ □ψ

6 Uniform Interpolation

While we have proven that simplification preserves entailment, we must also
show that the simplification of a uniform interpolant remains a uniform inter-
polant. This can be summarized in the following theorem:

Theorem 6.1 Let p be an atomic variable and V a set of atomic variables such
that p /∈ V . For every formula ϕ ∈ F (V ∪ {p}), simp (Ep ϕ) and simp (Ap ϕ)
are uniform interpolants of ϕ. Here, Ap and Ep are the uniform interpolants
from Pitts’ construction.

To prove this, we need to establish the following lemma:

Lemma 6.2 Let ϕ ∈ F (V ∪ {p}). Then, simp ϕ ∈ F (V ∪ {p}).

Since the simplification only removes variables, the proof is simply a matter
of convincing Coq that the simplification does not introduce new variables.

Once we have this lemma, the equivalence of the simplification takes care of
the rest.

7 Performance

To evaluate the performance of the simplifications, we implemented a benchmark
that compares the number of symbols in the original formula to the simplified
one. The results are shown in Figure 4.

5

Formula Orig Simp %
A((p ∧ q) → ¬p) 15 5 66.67
A(t ∨ q ∨ t) 5 3 40.00
E(t ∨ q ∨ t) 5 3 40.00
A(¬((F ∧ p) → ¬p ∨ F)) 5 1 80.00
E(¬((F ∧ p) → ¬p ∨ F)) 5 1 80.00
A((q → p) ∧ (p→ ¬r)) 11 7 36.36
A((q → (p→ r)) → r) 9 1 88.89
E((q → (p→ r)) → r) 643 117 81.80
A(((q → p) → r) → r) 21 7 66.67
E(((q → p) → r) → r) 69 17 75.36
A((a→ (q ∧ r)) → s) 15 9 40.00
E((a→ (q ∧ r)) → s) 465 225 51.61
A((a→ (q ∧ r)) → ¬p) 63 35 44.44
A((a→ (q ∧ r)) → ¬p→ k) 67 37 44.78
E((a→ (q ∧ r)) → ¬p→ k) 2287 3 99.87
A((q → (p→ r)) → ¬t) 17 13 23.53
E((q → (p→ r)) → ¬t) 993 441 55.59
A((q → (p→ r)) → ¬t) 17 13 23.53
E((q → (p→ r)) → ¬t) 993 441 55.59
A((q → (q ∧ (k → p)) → k)) 31 29 6.45
E((q → (q ∧ (k → p)) → k)) 13 9 30.77
A((q → (p ∨ r)) → ¬(t ∨ p)) 355 1 99.72
E((q → (p ∨ r)) → ¬(t ∨ p)) 567 73 87.13
A(((q → (p ∨ r)) ∧ (t→ p)) → t) 57 1 98.25
E(((q → (p ∨ r)) ∧ (t→ p)) → t) 733 155 78.85
A(((¬t→ (q ∧ p)) ∧ (t→ p)) → t) 77 19 75.32
E(((¬t→ (q ∧ p)) ∧ (t→ p)) → t) 49 41 16.33
A((¬p ∧ q) → (p ∨ r → t) → o) 151 51 66.23
E((¬p ∧ q) → (p ∨ r → t) → o) 165 3 98.18
E(((s ∨ r) ∨ (⊥ ∨ r)) ∧ ((⊥ ∨ p) ∨ (t→ s))) 251 165 34.26
E(((t ∧ r) ∨ (t ∧ s)) ∧ ((r ∧ p) ∧ (p→ t))) 4183 543 87.02
E(((t ∧ t) ∨ (t→ s)) ∧ (¬s ∧ (⊥ → r))) 127 61 51.97
A((t ∨ r) → (t ∧ s)) 35 31 11.43
E((t ∨ r) → (t ∧ s)) 507 91 82.05
A(□((p ∨ q) ∧ (p→ r))) 36 18 50.00
A(□(p ∨□q ∧ t) ∧ (t→ p)) 242 179 26.03
E(□(p ∨□q ∧ t) ∧ (t→ p)) 11 11 0.00
A(□(□(t→ t))) 70 11 84.29

Figure 4: Performance of the simplifications

6

8 Continuous integration

As part of the internship, another task was setting up a continuous integration
(CI) pipeline for the project. The CI pipeline is based on GitHub Actions and
it handles the following tasks:

• Building the project

• Generating documentation

• Running benchmarks

• Deploying the documentation and demo to GitHub Pages (conditional on
a successful build in the main branch)

The CI utilizes the coqor/coq Docker image as a foundation for building
the project. The coq-community/docker-coq-action environment is employed
to set up and execute the build and benchmark processes. The resulting .html
files from documentation generation are automatically deployed to the gh-pages
branch of the repository using the peaceiris/actions-gh-pages action.

9 Conclusion

Results The simplifications have been successfully implemented and verified
in Coq without any assumptions. A benchmark for the simplifications has been
developed, and the results are promising. Additionally, the CI pipeline has been
set up and performs its tasks reliably.

Future Work The simplifications are designed to be easily extensible. Future
work could involve adding more simplifications to the existing ones. Another
possibility would be sorting the formulas when flattening disjunctions and con-
junctions to ensure that the simplifications are optimal, e.g. by sorting variables
alphabetically. Large implications could also be flattened, converting them to
a conjunction, e.g., (ϕ → (ψ → η)) could be simplified to ϕ ∧ ψ → η, using our
conjunction simplification on the left-hand side.

My Experience This internship has been a great learning experience. I
have learned a lot about Coq, formal verification, intuitionistic logic, and proof
calculus. I am grateful for the opportunity to work on this project, and I am
looking forward to continuing to contribute to it.

Acknowledgements I would like to thank my mentors, Hugo Férée and Sam
van Gool, for their guidance and support throughout the internship.

7

References

Uniform interpolation calculator, 2024. URL https://github.com/hferee/
UIML.

Hugo Férée and Sam van Gool. Formalizing and computing propositional quan-
tifiers. In Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2023, page 148–158, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9798400700262.
doi: 10.1145/3573105.3575668. URL https://doi.org/10.1145/3573105.
3575668.

Hugo Férée, Iris van der Giessen, Sam van Gool, and Ian Shillito. Mechanised
uniform interpolation for modal logics k, gl, and isl. In Christoph Benzmüller,
Marijn J.H. Heule, and Renate A. Schmidt, editors, Automated Reasoning,
pages 43–60, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-
63501-4.

Andrew M. Pitts. On an interpretation of second order quantification in first
order intuitionistic propositional logic. The Journal of Symbolic Logic, 57(1):
33–52, 1992. ISSN 00224812. URL http://www.jstor.org/stable/2275175.

8

https://github.com/hferee/UIML
https://github.com/hferee/UIML
https://doi.org/10.1145/3573105.3575668
https://doi.org/10.1145/3573105.3575668
http://www.jstor.org/stable/2275175

	Objective
	Introduction
	Methodology
	Equivalence
	Simplifications
	Obviously Smaller
	Disjunctions and conjunctions
	Disjunctions
	Conjunctions

	Implications
	Boxes

	Uniform Interpolation
	Performance
	Continuous integration
	Conclusion

